
Math 472 Homework Assignment 1

Problem 1.9.2. Let p(x) = 1/2x, x = 1, 2, 3, . . ., zero elsewhere, be the
pmf of the random variable X. Find the mgf, the mean, and the variance
of X.

Solution 1.9.2. Using the geometric series a/(1 − r) =
∑∞

x=1 ar
x−1 for

|r| < 1, we are able to compute the mgf of X,

m(t) = E[etX ] =
∞∑
x=1

etxp(x) =
∞∑
x=1

etx/2x =
∞∑
x=1

(et/2)x

=
et/2

1− (et/2)
= (2e−t − 1)−1,

for t < ln 2. With m(t) = (2e−t− 1)−1, we are able to compute the first and
second derivatives of m(t),

m′(t) = 2e−t(2e−t − 1)−2

m′′(t) = 2e−t(2e−t + 1)(2e−t − 1)−3.

The first and second moments of X are µ = m′(0) = 2 and µ2 = m′′(0) = 6,
and the variance is σ2 = µ2− µ2 = 6− 4 = 2. Therefore the mgf, the mean,
and the variance of X are

m(t) = (2e−t − 1)−1, µ = 2, σ2 = 2.

Problem 1.9.3. For each of the following distributions, compute

P (µ− 2σ < X < µ+ 2σ).

(1) f(x) = 6x(1− x), 0 < x < 1, zero elsewhere.
(2) p(x) = 1/2x, x = 1, 2, 3, . . ., zero elsewhere.

Solution 1.9.3. (1) The mean and second moment are

µ =

∫ 1

0
xf(x) dx =

∫ 1

0
6x2(1− x) dx = 1/2

µ2 =

∫ 1

0
x2f(x) dx =

∫ 1

0
6x3(1− x) dx = 3/10,

so the variance is σ2 = µ2 − µ2 = 3/10 − (1/2)2 = 1/20 and the standard
deviation is σ = 1/

√
20 =

√
5/10 < 0.224. Hence

P (µ− 2σ < X < µ+ 2σ) = P (
1

2
−
√

5

5
< X <

1

2
+

√
5

5
)

=

∫ 1
2
+
√
5

5

1
2
−
√
5

5

6x(1− x) dx

=
11
√

5

25
≈ 0.984.
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Remark: f(x) = 6x(1 − x) is the density for a Beta distribution with pa-
rameters α = 2, β = 2, so you can quickly find the mean and variance using
the equations on page 667.

(2) From problem 1.9.2, we know that µ = 2 and σ =
√

2. Since µ−2σ =
2− 2

√
2 < 0 and µ+ 2σ = 2 + 2

√
2 ≈ 4.82

P (µ− 2σ < X < µ+ 2σ) = P (X ≤ 4)

=
4∑

x=1

1

2x
=

15

16
= 0.9375.

Problem 1.9.5. Let a random variable X of the continuous type have a
pdf f(x) whose graph is symmetric with respect to x = c. If the mean value
of X exists, show that E[X] = c.

Solution 1.9.5. Given that f(c−x) = f(c+x), we will show that E[X−c] =
E[X]− c = 0.

E[X − c] =

∫ ∞
−∞

(x− c)f(x) dx

=

∫ c

−∞
(x− c)f(x) dx+

∫ ∞
c

(x− c)f(x) dx.

In the first integral, make the substitution x = c − u, dx = −du and in the
second integral make the substitution x = c+ u, dx = du. Then

E[X − c] =

∫ c

−∞
(x− c)f(x) dx+

∫ ∞
c

(x− c)f(x) dx.

=

∫ 0

∞
uf(c− u) du+

∫ ∞
0

uf(c+ u) du

= −
∫ ∞
0

uf(c+ u) du+

∫ ∞
0

uf(c+ u) du = 0,

as desired. We conclude that if the density function for a random variable
X is symmetric about the point c, then µ = E[X] = c.

Problem 1.9.6. Let the random variable X have mean µ, standard devia-
tion σ, and mgf M(t), −h < t < h. Show that

E

[
X − µ
σ

]
= 0, E

[(
X − µ
σ

)2
]

= 1, and

E

{
exp

[
t

(
X − µ
σ

)]}
= e−µt/σM

(
t

σ

)
, −hσ < t < hσ.
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Solution 1.9.6. Using the linear properties of expected value (see Theorem
1.8.2) and the definition of µ = E[X], we calculate

E

[
X − µ
σ

]
=
E[X − µ]

σ
=
E[X]− µ

σ
=
µ− µ
σ

= 0,

which verifies the first equation.
Using the linear properties of expected value again and the definition of

σ2 = E[(X − µ)2], we calculate

E

[(
X − µ
σ

)2
]

= E

[
(X − µ)2

σ2

]
=
E[(X − µ)2]

σ2
=
σ2

σ2
= 1,

which verifies the second equation.
If −hσ < t < hσ then −h < t/σ < h, which shows that t/σ is in the

domain of M . Using the definition of M(t) = E[exp(tX)] and the linear
properties of the expected value, we calculate

e−
µt
σ M

(
t

σ

)
= e−

µt
σ E

[
e
t
σ
X
]

= E
[
e−

µt
σ e

t
σ
X
]

= E
[
e
t
σ
X−µt

σ

]
= E

[
et

(X−µ)
σ

]
,

which verifies the third equation.

Problem 1.9.7. Show that the moment generating function of the random
variable X having the pdf f(x) = 1/3, −1 < x < 2, zero elsewhere, is

M(t) =

{
e2t−e−t

3t , t 6= 0

1, t = 0.

Solution 1.9.7. As with every mgf, M(0) = E[e0] = E[1] = 1. For t 6= 0,

M(t) = E
[
etX
]

=

∫ ∞
−∞

etxf(x) dx =

∫ 2

−1

etx

3
dx =

etx

3t

∣∣∣∣∣
2

−1

=
e2t − e−t

3t
.

Problem 1.9.11. Let X denote a random variable such that K(t) = E[tX ]
exists for all real values of t in a certain open interval that includes the
point t = 1. Show that K(m)(1) is equal to the mth factorial moment
E[X(X − 1) · · · (X −m+ 1)].

Solution 1.9.11. Differentiating k(t) = tx m times we find

k(m)(t) = x(x− 1) · · · (x−m+ 1)tx−m.

We may therefore expand tx in its Taylor series about t = 1

tx =

∞∑
m=0

k(m)(1)
(t− 1)m

m!
=

∞∑
m=0

x(x− 1) · · · (x−m+ 1)
(t− 1)m

m!
.
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Using this Taylor series we see that

K(t) = E
[
tX
]

= E

[ ∞∑
m=0

X(X − 1) · · · (X −m+ 1)
(t− 1)m

m!

]

=
∞∑
m=0

E [X(X − 1) · · · (X −m+ 1)]
(t− 1)m

m!

=

∞∑
m=0

K(m)(1)
(t− 1)m

m!
.

Comparing the last two series shows that

K(m)(1) = E [X(X − 1) · · · (X −m+ 1)] .

Problem 1.9.12. Let X be a random variable. If m is a positive integer,
the expectation E[(X − b)m], if it exists, is called the mth moment of the
distribution about the point b. Let the first, second, and third moments of
the distribution about the point 7 be 3, 11, and 15, respectively. Determine
the mean µ of X, and then find the first, second, and third moments of the
distribution about the point µ.

Solution 1.9.12. We are given E[X − 7] = 3, E[(X − 7)2] = 11, and
E[(X − 7)3] = 15. Expanding the first equation gives

E[X − 7] = E[X]− 7 = µ− 7 = 3,

and therefore µ = 10. Continuing the calculations,

E[(X − µ)2] = E[(X − 10)2] = E
{

[(X − 7)− 3]2
}

= E[(X − 7)2 − 6(X − 7) + 9] = E[(X − 7)2]− 6E[X − 7] + 9

= 11− 18 + 9 = 2.

E[(X − µ)3] = E[(X − 10)3] = E
{

[(X − 7)− 3]3
}

= E[(X − 7)3]− 9E[(X − 7)2] + 27E[X − 7]− 27

= 15− 99 + 81− 27 = −30.

Thus the first, second, and third moments of X about the mean µ = 10 are
respectively 0, 2, and −30.

Problem 1.9.25. Let X be a random variable with a pdf f(x) and mgf
M(t). Suppose f is symmetric about 0; i.e., f(−x) = f(x). Show that
M(−t) = M(t).
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Solution 1.9.25. We will use the substitution x = −u, dx = −du in the
following calculation.

M(−t) =

∫ ∞
−∞

e(−t)xf(x) dx =

∫ ∞
−∞

et(−x)f(x) dx

= −
∫ −∞
∞

etuf(−u) du =

∫ ∞
−∞

etuf(u) du

= M(t).

Problem 1.10.3. If X is a random variable such that E[X] = 3 and
E[X2] = 13, use Chebyshev’s inequality to determine a lower bound for
the probability P (−2 < X < 8).

Solution 1.10.3. Chebyshev’s inequality states that P (|X − µ| < kσ) ≥
1− (1/k2). In this problem µ = 3 and σ2 = 13− 9 = 4, giving σ = 2. Thus

P (−2 < X < 8) = P (−5 < X − 3 < 5) = P (|X − 3| < 5)

= P (|X − 3| < 5

2
2)

≥ 1−
(

2

5

)2

= 1− 4

25
=

21

25
.

From the Chebyshev inequality we conclude that P (−2 < X < 8) ≥ 21/25.

Problem 1.10.4. Let X be a random variable with mgf M(t), −h < t < h.
Prove that

P (X ≥ a) ≤ e−atM(t), 0 < t < h,

and that

P (X ≤ a) ≤ e−atM(t), −h < t < 0.

Solution 1.10.4. We will use Markov’s inequality (Theorem 1.10.2), which
states that if u(X) ≥ 0 and if c > 0 is a constant, then

P (u(X) ≥ c) ≤ E[u(X)]/c.

We will also use the facts that increasing functions preserve order and de-
creasing functions reverse order.

Consider the function u(x) = etx > 0, which is an increasing function
of x as long as t > 0. So, for t > 0 we have that X ≥ a if and only if
etX = u(X) ≥ u(a) = eta. Applying Markov’s inequality and the definition
of M(t) we have for 0 < t < h

P (X ≥ a) = P (etX ≥ eta) ≤ E[etX ]/eta = e−taM(t).

When t < 0, u(x) = etx > 0 is a decreasing function of x, so X ≤ a if and
only if etX = u(X) ≥ u(a) = eta. Applying Markov’s inequality again we
have for −h < t < 0

P (X ≤ a) = P (etX ≥ eta) ≤ E[etX ]/eta = e−taM(t).
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Problem 1.10.5. The mgf of X exists for all real values of t and is given
by

M(t) =
et − e−t

2t
, t 6= 0,M(0) = 1.

Use the result of the preceding exercise to show that P (X ≥ 1) = 0 and
P (X ≤ −1) = 0.

Solution 1.10.5. Taking a = 1 in problem 1.10.4, we see that for all t > 0,
P (X ≥ 1) ≤ e−tM(t) = (1− e−2t)/(2t). Taking the limit as t→∞

0 ≤ P (X ≥ 1) ≤ lim
t→∞

1− e−2t

2t
= 0

which shows that P (X ≥ 1) = 0.
Taking a = −1 in problem 1.10.4, we see that for all t < 0, P (X ≤ −1) ≤

etM(t) = (e2t − 1)/(2t). Taking the limit as t→ −∞

0 ≤ P (X ≤ −1) ≤ lim
t→−∞

e2t − 1

2t
= 0

which shows that P (X ≤ −1) = 0.

Problem 3.3.1. If (1 − 2t)−6, t < 1/2, is the mgf of the random variable
X, find P (X < 5.23).

Solution 3.3.1. The mgf of X is that of a χ2-distribution with r = 12
degrees of freedom. Using Table II on page 658, we see that the probability
P (X < 5.23) ≈ 0.050.

Problem 3.3.2. If X is χ2(5), determine the constants c and d so that
P (c < X < d) = 0.95 and P (X < c) = 0.025.

Solution 3.3.2. Using Table II on page 658 we find P (X < 0.831) ≈ 0.025
and P (X < 12.833) ≈ 0.975. So, with c = 0.831 and d = 12.833 we have
P (c < X < d) = 0.975− 0.025 = 0.95 and P (X < c) = 0.025.

Problem 3.3.3. Find P (3.28 < X < 25.2) if X has a gamma distribution
with α = 3 and β = 4.

Solution 3.3.3. The mgf of X is MX(t) = (1 − 4t)−3. From this we see

that M(t/2) = E[etX/2] = (1− 2t)−3, which is the mgf for a χ2 with r = 6
degrees of freedom. Using Table II on page 658 we calculate

P (3.28 < X < 25.2) = P (1.64 < X/2 < 12.6) ≈ 0.950− 0.050 = 0.900.

Problem 3.3.5. Show that∫ ∞
µ

zk−1e−z

Γ(k)
dz =

k−1∑
x=0

µxe−µ

x!
, k = 1, 2, 3, . . . .(1)

This demonstrates the relationship between the cdfs of the gamma and Pois-
son distributions.
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Solution 3.3.5. An easy calculation shows that equation (1) is valid for
k = 1, which establishes the base case for an induction proof.

The key to establishing the induction step is the following calculation:

µke−µ

Γ(k + 1)
= − zke−z

Γ(k + 1)

∣∣∣∣∣
∞

µ

=

∫ ∞
µ

d

dz

[
− zke−z

Γ(k + 1)

]
dz

=

∫ ∞
µ
−kz

k−1e−z

kΓ(k)
+

zke−z

Γ(k + 1)
dz

=

∫ ∞
µ
−z

k−1e−z

Γ(k)
+

zke−z

Γ(k + 1)
dz.

(2)

Now add µke−µ/Γ(k + 1) to both sides of equation (1) to obtain∫ ∞
µ

zk−1e−z

Γ(k)
dz +

µke−µ

Γ(k + 1)
=

k−1∑
x=0

µxe−µ

x!
+

µke−µ

Γ(k + 1)
=

k∑
x=0

µxe−µ

x!
.

Using equation (2) to simplify the left hand side of the previous equation
yields ∫ ∞

µ

zke−z

Γ(k + 1)
dz =

k∑
x=0

µxe−µ

x!
,

which shows that equation (1) is true for k+ 1 if it is true for k. Therefore,
by the principle of mathematical induction, equation (1) is true for all k =
1, 2, 3, . . ..

Problem 3.3.9. Let X have a gamma distribution with parameters α and
β. Show that P (X ≥ 2αβ) ≤ (2/e)α.

Solution 3.3.9. From appendix D on page 667, we see that the mgf for
X is M(t) = (1 − βt)−α for t < 1/β. Problem 1.10.4 shows that for every
constant a and for every t > 0 in the domain of M(t), P (X ≥ a) ≤ e−atM(t).
Applying this result to our gamma distributed random variable we have for
all 0 < t < 1/β

P (X ≥ 2αβ) ≤ e−2αβt

(1− βt)α
.

Let us try to find the minimum value of y = e−2αβt(1−βt)−α over the interval
0 < t < 1/β. A short calculation shows that the first two derivatives of y
are

y′ = αβe−2αβ(1− βt)−α−1(2βt− 1)

y′′ = αβ2e−2αβ(1− βt)−α−2
[
1 + α(2βt− 1)2

]
.
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Since y′ = 0 at t = 1/(2β) ∈ (0, 1/β) and since y′′ > 0 we see that y takes
its minimum value at t = 1/(2β) and therefore

P (X ≥ 2αβ) ≤ e−2αβt

(1− βt)α

∣∣∣∣∣
t= 1

2β

=

(
2

e

)α
.

Problem 3.3.15. Let X have a Poisson distribution with parameter m. If
m is an experimental value of a random variable having a gamma distribu-
tion with α = 2 and β = 1, compute P (X = 0, 1, 2).

Solution 3.3.15. We will be using techniques from the topic of joint and
conditional distributions. We are given that m has a gamma distribution
with α = 2 and β = 1, therefore its marginal probability density function is
fm(m) = me−m for m > 0, zero elsewhere. For the random variable X, we
are given the conditional probability mass function given m is p(x | m) =
mxe−m/x! for x = 0, 1, 2, . . . and m > 0, zero elsewhere. From the given
information we are able to determine that the joint mass-density function
is

f(x,m) = p(x | m)fm(m) = mx+1e−2m/x!

for x = 0, 1, 2, . . . and m > 0, zero elsewhere. We calculate the marginal
probability mass function for X,

pX(x) =

∫ ∞
−∞

f(x,m) dm

=

∫ ∞
0

mx+1e−2m

x!
dm (letting u = 2m, du = 2dm)

=
1

2x+2x!

∫ ∞
0

u(x+2)−1e−u du

=
Γ(x+ 2)

2x+2x!

=
x+ 1

2x+2
,

for x = 0, 1, 2, . . ., zero elsewhere. This allows us to find

P (X = 0) = pX(0) =
1

4
,

P (X = 1) = pX(1) =
1

4
,

P (X = 2) = pX(2) =
3

16
.

3.3.19. Determine the constant c in each of the following so that each f(x)
is a β pdf:

(1) f(x) = cx(1− x)3, 0 < x < 1, zero elsewhere.
(2) f(x) = cx4(1− x)5, 0 < x < 1, zero elsewhere.
(3) f(x) = cx2(1− x)8, 0 < x < 1, zero elsewhere.
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Solution 3.3.19.

(1) c = 1/B(2, 4) = Γ(6)/(Γ(2)Γ(4)) = 5!/(1!3!) = 20.
(2) c = 1/B(5, 6) = Γ(11)/(Γ(5)Γ(6)) = 10!/(4!5!) = 1260.
(3) c = 1/B(3, 9) = Γ(12)/(Γ(3)Γ(9)) = 11!/(2!8!) = 495.

Problem 3.3.22. Show, for k = 1, 2, . . . , n, that∫ 1

p

n!

(k − 1)!(n− k)!
zk−1(1− z)n−kdz =

k−1∑
x=0

(
n

x

)
px(1− p)n−x.

This demonstrates the relationship between the cdfs of the β and binomial
distributions.

Solution 3.3.22. This problem is very similar to problem 3.3.5. In this
case the key to the induction step is the following calculation:(

n

k

)
pk(1− p)n−k = − n!

k!(n− k)!
zk(1− z)n−k

∣∣∣∣∣
1

p

=

∫ 1

p

d

dz

[
− n!

k!(n− k)!
zk(1− z)n−k

]
dz

=

∫ 1

p
− kn!

k!(n− k)!
zk−1(1− z)n−k +

(n− k)n!

k!(n− k)!
zk(1− z)n−k−1 dz

=

∫ 1

p
− n!

(k − 1)!(n− k)!
zk−1(1− z)n−k +

n!

k!(n− k − 1)!
zk(1− z)n−k−1 dz

The rest of the proof is similar to the argument in problem 3.3.5.

Remark: an alternate proof is to observe that
∑k−1

x=0

(
n
x

)
px(1− p)n−x is a

telescoping series, when you take advantage of the above calculation.

Problem 3.3.23. Let X1 and X2 be independent random variables. Let
X1 and Y = X1 + X2 have chi-square distributions with r1 and r degrees
of freedom, respectively. Here r1 < r. Show that X2 has a chi-square
distribution with r − r1 degrees of freedom.

Solution 3.3.23. From appendix D on page 667, we see that the mgfs of X1

and Y are, respectively, MX1(t) = (1 − 2t)−r1/2 and MY (t) = (1 − 2t)−r/2.
Since Y = X1 + X2 is the sum of independent random variables, MY (t) =
MX1(t)MX2(t) (by Theorem 2.2.5). Solving, we find that

MX2(t) =
MY (t)

MX1(t)
=

(1− 2t)−r/2

(1− 2t)−r1/2
= (1− 2t)−(r−r1)/2,

which is the mgf of a chi-square random variable with r − r1 degrees of
freedom. Therefore, by Theorem 1.9.1, X2 has a chi-square distribution
with r − r1 degrees of freedom.
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Problem 3.3.24. Let X1, X2 be two independent random variables having
gamma distributions with parameters α1 = 3, β1 = 3 and α2 = 5, β2 = 1,
respectively.

(1) Find the mgf of Y = 2X1 + 6X2.
(2) What is the distribution of Y ?

Solution 3.3.24. (1) The mgfs of X1 and X2 are, respectively,

MX1(t) = (1− 3t)−3 and MX2(t) = (1− t)−5.
Since X1 and X2 are independent, theorem 2.5.4 implies that

MY (t) = E
[
et(2X1+6X2)

]
= E

[
e2tX1e6tX2

]
= E

[
e2tX1

]
E
[
e6tX2

]
= MX1(2t)MX2(6t)

= (1− 3(2t))−3(1− 1(6t))−5

= (1− 6t)−8.

(2) Since (1− 6t)−8 is the mgf of a gamma distribution with parameters
α = 8 and β = 6, Theorem 1.9.1 shows that Y has a gamma distribution
with parameters α = 8 and β = 6.


