Math 472 Homework Assignment 1

Problem 1.9.2. Let $p(x)=1 / 2^{x}, x=1,2,3, \ldots$, zero elsewhere, be the pmf of the random variable X. Find the mgf, the mean, and the variance of X.

Solution 1.9.2. Using the geometric series $a /(1-r)=\sum_{x=1}^{\infty} a r^{x-1}$ for $|r|<1$, we are able to compute the mgf of X,

$$
\begin{aligned}
m(t) & =E\left[e^{t X}\right]=\sum_{x=1}^{\infty} e^{t x} p(x)=\sum_{x=1}^{\infty} e^{t x} / 2^{x}=\sum_{x=1}^{\infty}\left(e^{t} / 2\right)^{x} \\
& =\frac{e^{t} / 2}{1-\left(e^{t} / 2\right)}=\left(2 e^{-t}-1\right)^{-1}
\end{aligned}
$$

for $t<\ln 2$. With $m(t)=\left(2 e^{-t}-1\right)^{-1}$, we are able to compute the first and second derivatives of $m(t)$,

$$
\begin{aligned}
m^{\prime}(t) & =2 e^{-t}\left(2 e^{-t}-1\right)^{-2} \\
m^{\prime \prime}(t) & =2 e^{-t}\left(2 e^{-t}+1\right)\left(2 e^{-t}-1\right)^{-3}
\end{aligned}
$$

The first and second moments of X are $\mu=m^{\prime}(0)=2$ and $\mu_{2}=m^{\prime \prime}(0)=6$, and the variance is $\sigma^{2}=\mu_{2}-\mu^{2}=6-4=2$. Therefore the mgf, the mean, and the variance of X are

$$
m(t)=\left(2 e^{-t}-1\right)^{-1}, \quad \mu=2, \quad \sigma^{2}=2
$$

Problem 1.9.3. For each of the following distributions, compute

$$
P(\mu-2 \sigma<X<\mu+2 \sigma)
$$

(1) $f(x)=6 x(1-x), 0<x<1$, zero elsewhere.
(2) $p(x)=1 / 2^{x}, x=1,2,3, \ldots$, zero elsewhere.

Solution 1.9.3. (1) The mean and second moment are

$$
\begin{aligned}
\mu & =\int_{0}^{1} x f(x) d x=\int_{0}^{1} 6 x^{2}(1-x) d x=1 / 2 \\
\mu_{2} & =\int_{0}^{1} x^{2} f(x) d x=\int_{0}^{1} 6 x^{3}(1-x) d x=3 / 10
\end{aligned}
$$

so the variance is $\sigma^{2}=\mu_{2}-\mu^{2}=3 / 10-(1 / 2)^{2}=1 / 20$ and the standard deviation is $\sigma=1 / \sqrt{20}=\sqrt{5} / 10<0.224$. Hence

$$
\begin{aligned}
P(\mu-2 \sigma<X<\mu+2 \sigma) & =P\left(\frac{1}{2}-\frac{\sqrt{5}}{5}<X<\frac{1}{2}+\frac{\sqrt{5}}{5}\right) \\
& =\int_{\frac{1}{2}-\frac{\sqrt{5}}{5}}^{\frac{1}{2}+\frac{\sqrt{5}}{5}} 6 x(1-x) d x \\
& =\frac{11 \sqrt{5}}{25} \approx 0.984 .
\end{aligned}
$$

Remark: $f(x)=6 x(1-x)$ is the density for a Beta distribution with parameters $\alpha=2, \beta=2$, so you can quickly find the mean and variance using the equations on page 667 .
(2) From problem 1.9.2, we know that $\mu=2$ and $\sigma=\sqrt{2}$. Since $\mu-2 \sigma=$ $2-2 \sqrt{2}<0$ and $\mu+2 \sigma=2+2 \sqrt{2} \approx 4.82$

$$
\begin{aligned}
P(\mu-2 \sigma<X<\mu+2 \sigma) & =P(X \leq 4) \\
& =\sum_{x=1}^{4} \frac{1}{2^{x}}=\frac{15}{16}=0.9375 .
\end{aligned}
$$

Problem 1.9.5. Let a random variable X of the continuous type have a pdf $f(x)$ whose graph is symmetric with respect to $x=c$. If the mean value of X exists, show that $E[X]=c$.

Solution 1.9.5. Given that $f(c-x)=f(c+x)$, we will show that $E[X-c]=$ $E[X]-c=0$.

$$
\begin{aligned}
E[X-c] & =\int_{-\infty}^{\infty}(x-c) f(x) d x \\
& =\int_{-\infty}^{c}(x-c) f(x) d x+\int_{c}^{\infty}(x-c) f(x) d x .
\end{aligned}
$$

In the first integral, make the substitution $x=c-u, d x=-d u$ and in the second integral make the substitution $x=c+u, d x=d u$. Then

$$
\begin{aligned}
E[X-c] & =\int_{-\infty}^{c}(x-c) f(x) d x+\int_{c}^{\infty}(x-c) f(x) d x \\
& =\int_{\infty}^{0} u f(c-u) d u+\int_{0}^{\infty} u f(c+u) d u \\
& =-\int_{0}^{\infty} u f(c+u) d u+\int_{0}^{\infty} u f(c+u) d u=0
\end{aligned}
$$

as desired. We conclude that if the density function for a random variable X is symmetric about the point c, then $\mu=E[X]=c$.

Problem 1.9.6. Let the random variable X have mean μ, standard deviation σ, and mgf $M(t),-h<t<h$. Show that

$$
\begin{aligned}
E\left[\frac{X-\mu}{\sigma}\right]=0, \quad E\left[\left(\frac{X-\mu}{\sigma}\right)^{2}\right]=1, \quad \text { and } \\
E\left\{\exp \left[t\left(\frac{X-\mu}{\sigma}\right)\right]\right\}=e^{-\mu t / \sigma} M\left(\frac{t}{\sigma}\right), \quad-h \sigma<t<h \sigma .
\end{aligned}
$$

Solution 1.9.6. Using the linear properties of expected value (see Theorem 1.8.2) and the definition of $\mu=E[X]$, we calculate

$$
E\left[\frac{X-\mu}{\sigma}\right]=\frac{E[X-\mu]}{\sigma}=\frac{E[X]-\mu}{\sigma}=\frac{\mu-\mu}{\sigma}=0
$$

which verifies the first equation.
Using the linear properties of expected value again and the definition of $\sigma^{2}=E\left[(X-\mu)^{2}\right]$, we calculate

$$
E\left[\left(\frac{X-\mu}{\sigma}\right)^{2}\right]=E\left[\frac{(X-\mu)^{2}}{\sigma^{2}}\right]=\frac{E\left[(X-\mu)^{2}\right]}{\sigma^{2}}=\frac{\sigma^{2}}{\sigma^{2}}=1,
$$

which verifies the second equation.
If $-h \sigma<t<h \sigma$ then $-h<t / \sigma<h$, which shows that t / σ is in the domain of M. Using the definition of $M(t)=E[\exp (t X)]$ and the linear properties of the expected value, we calculate
$e^{-\frac{\mu t}{\sigma}} M\left(\frac{t}{\sigma}\right)=e^{-\frac{\mu t}{\sigma}} E\left[e^{\frac{t}{\sigma} X}\right]=E\left[e^{\left.-\frac{\mu t}{\sigma} e^{\frac{t}{\sigma} X}\right]=E\left[e^{\frac{t}{\sigma} X-\frac{\mu t}{\sigma}}\right]=E\left[e^{t \frac{(X-\mu)}{\sigma}}\right], ~}\right.$ which verifies the third equation.

Problem 1.9.7. Show that the moment generating function of the random variable X having the pdf $f(x)=1 / 3,-1<x<2$, zero elsewhere, is

$$
M(t)= \begin{cases}\frac{e^{2 t}-e^{-t}}{3 t}, & t \neq 0 \\ 1, & t=0\end{cases}
$$

Solution 1.9.7. As with every mgf, $M(0)=E\left[e^{0}\right]=E[1]=1$. For $t \neq 0$,

$$
M(t)=E\left[e^{t X}\right]=\int_{-\infty}^{\infty} e^{t x} f(x) d x=\int_{-1}^{2} \frac{e^{t x}}{3} d x=\left.\frac{e^{t x}}{3 t}\right|_{-1} ^{2}=\frac{e^{2 t}-e^{-t}}{3 t}
$$

Problem 1.9.11. Let X denote a random variable such that $K(t)=E\left[t^{X}\right]$ exists for all real values of t in a certain open interval that includes the point $t=1$. Show that $K^{(m)}(1)$ is equal to the m th factorial moment $E[X(X-1) \cdots(X-m+1)]$.

Solution 1.9.11. Differentiating $k(t)=t^{x} m$ times we find

$$
k^{(m)}(t)=x(x-1) \cdots(x-m+1) t^{x-m} .
$$

We may therefore expand t^{x} in its Taylor series about $t=1$

$$
t^{x}=\sum_{m=0}^{\infty} k^{(m)}(1) \frac{(t-1)^{m}}{m!}=\sum_{m=0}^{\infty} x(x-1) \cdots(x-m+1) \frac{(t-1)^{m}}{m!}
$$

Using this Taylor series we see that

$$
\begin{aligned}
K(t) & =E\left[t^{X}\right]=E\left[\sum_{m=0}^{\infty} X(X-1) \cdots(X-m+1) \frac{(t-1)^{m}}{m!}\right] \\
& =\sum_{m=0}^{\infty} E[X(X-1) \cdots(X-m+1)] \frac{(t-1)^{m}}{m!} \\
& =\sum_{m=0}^{\infty} K^{(m)}(1) \frac{(t-1)^{m}}{m!}
\end{aligned}
$$

Comparing the last two series shows that

$$
K^{(m)}(1)=E[X(X-1) \cdots(X-m+1)] .
$$

Problem 1.9.12. Let X be a random variable. If m is a positive integer, the expectation $E\left[(X-b)^{m}\right]$, if it exists, is called the m th moment of the distribution about the point b. Let the first, second, and third moments of the distribution about the point 7 be 3,11 , and 15 , respectively. Determine the mean μ of X, and then find the first, second, and third moments of the distribution about the point μ.

Solution 1.9.12. We are given $E[X-7]=3, E\left[(X-7)^{2}\right]=11$, and $E\left[(X-7)^{3}\right]=15$. Expanding the first equation gives

$$
E[X-7]=E[X]-7=\mu-7=3,
$$

and therefore $\mu=10$. Continuing the calculations,

$$
\begin{aligned}
E\left[(X-\mu)^{2}\right] & =E\left[(X-10)^{2}\right]=E\left\{[(X-7)-3]^{2}\right\} \\
& =E\left[(X-7)^{2}-6(X-7)+9\right]=E\left[(X-7)^{2}\right]-6 E[X-7]+9 \\
& =11-18+9=2 . \\
E\left[(X-\mu)^{3}\right] & =E\left[(X-10)^{3}\right]=E\left\{[(X-7)-3]^{3}\right\} \\
& =E\left[(X-7)^{3}\right]-9 E\left[(X-7)^{2}\right]+27 E[X-7]-27 \\
& =15-99+81-27=-30 .
\end{aligned}
$$

Thus the first, second, and third moments of X about the mean $\mu=10$ are respectively 0,2 , and -30 .

Problem 1.9.25. Let X be a random variable with a pdf $f(x)$ and mgf $M(t)$. Suppose f is symmetric about 0; i.e., $f(-x)=f(x)$. Show that $M(-t)=M(t)$.

Solution 1.9.25. We will use the substitution $x=-u, d x=-d u$ in the following calculation.

$$
\begin{aligned}
M(-t) & =\int_{-\infty}^{\infty} e^{(-t) x} f(x) d x=\int_{-\infty}^{\infty} e^{t(-x)} f(x) d x \\
& =-\int_{\infty}^{-\infty} e^{t u} f(-u) d u=\int_{-\infty}^{\infty} e^{t u} f(u) d u \\
& =M(t)
\end{aligned}
$$

Problem 1.10.3. If X is a random variable such that $E[X]=3$ and $E\left[X^{2}\right]=13$, use Chebyshev's inequality to determine a lower bound for the probability $P(-2<X<8)$.

Solution 1.10.3. Chebyshev's inequality states that $P(|X-\mu|<k \sigma) \geq$ $1-\left(1 / k^{2}\right)$. In this problem $\mu=3$ and $\sigma^{2}=13-9=4$, giving $\sigma=2$. Thus

$$
\begin{aligned}
P(-2<X<8) & =P(-5<X-3<5)=P(|X-3|<5) \\
& =P\left(|X-3|<\frac{5}{2} 2\right) \\
& \geq 1-\left(\frac{2}{5}\right)^{2}=1-\frac{4}{25}=\frac{21}{25} .
\end{aligned}
$$

From the Chebyshev inequality we conclude that $P(-2<X<8) \geq 21 / 25$.
Problem 1.10.4. Let X be a random variable with $\operatorname{mgf} M(t),-h<t<h$. Prove that

$$
P(X \geq a) \leq e^{-a t} M(t), \quad 0<t<h
$$

and that

$$
P(X \leq a) \leq e^{-a t} M(t), \quad-h<t<0 .
$$

Solution 1.10.4. We will use Markov's inequality (Theorem 1.10.2), which states that if $u(X) \geq 0$ and if $c>0$ is a constant, then

$$
P(u(X) \geq c) \leq E[u(X)] / c .
$$

We will also use the facts that increasing functions preserve order and decreasing functions reverse order.

Consider the function $u(x)=e^{t x}>0$, which is an increasing function of x as long as $t>0$. So, for $t>0$ we have that $X \geq a$ if and only if $e^{t X}=u(X) \geq u(a)=e^{t a}$. Applying Markov's inequality and the definition of $M(t)$ we have for $0<t<h$

$$
P(X \geq a)=P\left(e^{t X} \geq e^{t a}\right) \leq E\left[e^{t X}\right] / e^{t a}=e^{-t a} M(t)
$$

When $t<0, u(x)=e^{t x}>0$ is a decreasing function of x, so $X \leq a$ if and only if $e^{t X}=u(X) \geq u(a)=e^{t a}$. Applying Markov's inequality again we have for $-h<t<0$

$$
P(X \leq a)=P\left(e^{t X} \geq e^{t a}\right) \leq E\left[e^{t X}\right] / e^{t a}=e^{-t a} M(t)
$$

Problem 1.10.5. The mgf of X exists for all real values of t and is given by

$$
M(t)=\frac{e^{t}-e^{-t}}{2 t}, t \neq 0, M(0)=1 .
$$

Use the result of the preceding exercise to show that $P(X \geq 1)=0$ and $P(X \leq-1)=0$.

Solution 1.10.5. Taking $a=1$ in problem 1.10.4, we see that for all $t>0$, $P(X \geq 1) \leq e^{-t} M(t)=\left(1-e^{-2 t}\right) /(2 t)$. Taking the limit as $t \rightarrow \infty$

$$
0 \leq P(X \geq 1) \leq \lim _{t \rightarrow \infty} \frac{1-e^{-2 t}}{2 t}=0
$$

which shows that $P(X \geq 1)=0$.
Taking $a=-1$ in problem 1.10.4, we see that for all $t<0, P(X \leq-1) \leq$ $e^{t} M(t)=\left(e^{2 t}-1\right) /(2 t)$. Taking the limit as $t \rightarrow-\infty$

$$
0 \leq P(X \leq-1) \leq \lim _{t \rightarrow-\infty} \frac{e^{2 t}-1}{2 t}=0
$$

which shows that $P(X \leq-1)=0$.
Problem 3.3.1. If $(1-2 t)^{-6}, t<1 / 2$, is the mgf of the random variable X, find $P(X<5.23)$.

Solution 3.3.1. The mgf of X is that of a χ^{2}-distribution with $r=12$ degrees of freedom. Using Table II on page 658, we see that the probability $P(X<5.23) \approx 0.050$.

Problem 3.3.2. If X is $\chi^{2}(5)$, determine the constants c and d so that $P(c<X<d)=0.95$ and $P(X<c)=0.025$.

Solution 3.3.2. Using Table II on page 658 we find $P(X<0.831) \approx 0.025$ and $P(X<12.833) \approx 0.975$. So, with $c=0.831$ and $d=12.833$ we have $P(c<X<d)=0.975-0.025=0.95$ and $P(X<c)=0.025$.

Problem 3.3.3. Find $P(3.28<X<25.2)$ if X has a gamma distribution with $\alpha=3$ and $\beta=4$.

Solution 3.3.3. The mgf of X is $M_{X}(t)=(1-4 t)^{-3}$. From this we see that $M(t / 2)=E\left[e^{t X / 2}\right]=(1-2 t)^{-3}$, which is the mgf for a χ^{2} with $r=6$ degrees of freedom. Using Table II on page 658 we calculate

$$
P(3.28<X<25.2)=P(1.64<X / 2<12.6) \approx 0.950-0.050=0.900 .
$$

Problem 3.3.5. Show that

$$
\begin{equation*}
\int_{\mu}^{\infty} \frac{z^{k-1} e^{-z}}{\Gamma(k)} d z=\sum_{x=0}^{k-1} \frac{\mu^{x} e^{-\mu}}{x!}, \quad k=1,2,3, \ldots . \tag{1}
\end{equation*}
$$

This demonstrates the relationship between the cdfs of the gamma and Poisson distributions.

Solution 3.3.5. An easy calculation shows that equation (1) is valid for $k=1$, which establishes the base case for an induction proof.

The key to establishing the induction step is the following calculation:

$$
\begin{align*}
\frac{\mu^{k} e^{-\mu}}{\Gamma(k+1)} & =-\left.\frac{z^{k} e^{-z}}{\Gamma(k+1)}\right|_{\mu} ^{\infty} \\
& =\int_{\mu}^{\infty} \frac{d}{d z}\left[-\frac{z^{k} e^{-z}}{\Gamma(k+1)}\right] d z \tag{2}\\
& =\int_{\mu}^{\infty}-\frac{k z^{k-1} e^{-z}}{k \Gamma(k)}+\frac{z^{k} e^{-z}}{\Gamma(k+1)} d z \\
& =\int_{\mu}^{\infty}-\frac{z^{k-1} e^{-z}}{\Gamma(k)}+\frac{z^{k} e^{-z}}{\Gamma(k+1)} d z .
\end{align*}
$$

Now add $\mu^{k} e^{-\mu} / \Gamma(k+1)$ to both sides of equation (1) to obtain

$$
\int_{\mu}^{\infty} \frac{z^{k-1} e^{-z}}{\Gamma(k)} d z+\frac{\mu^{k} e^{-\mu}}{\Gamma(k+1)}=\sum_{x=0}^{k-1} \frac{\mu^{x} e^{-\mu}}{x!}+\frac{\mu^{k} e^{-\mu}}{\Gamma(k+1)}=\sum_{x=0}^{k} \frac{\mu^{x} e^{-\mu}}{x!} .
$$

Using equation (2) to simplify the left hand side of the previous equation yields

$$
\int_{\mu}^{\infty} \frac{z^{k} e^{-z}}{\Gamma(k+1)} d z=\sum_{x=0}^{k} \frac{\mu^{x} e^{-\mu}}{x!}
$$

which shows that equation (1) is true for $k+1$ if it is true for k. Therefore, by the principle of mathematical induction, equation (1) is true for all $k=$ $1,2,3, \ldots$.

Problem 3.3.9. Let X have a gamma distribution with parameters α and β. Show that $P(X \geq 2 \alpha \beta) \leq(2 / e)^{\alpha}$.

Solution 3.3.9. From appendix D on page 667 , we see that the mgf for X is $M(t)=(1-\beta t)^{-\alpha}$ for $t<1 / \beta$. Problem 1.10.4 shows that for every constant a and for every $t>0$ in the domain of $M(t), P(X \geq a) \leq e^{-a t} M(t)$. Applying this result to our gamma distributed random variable we have for all $0<t<1 / \beta$

$$
P(X \geq 2 \alpha \beta) \leq \frac{e^{-2 \alpha \beta t}}{(1-\beta t)^{\alpha}}
$$

Let us try to find the minimum value of $y=e^{-2 \alpha \beta t}(1-\beta t)^{-\alpha}$ over the interval $0<t<1 / \beta$. A short calculation shows that the first two derivatives of y are

$$
\begin{aligned}
y^{\prime} & =\alpha \beta e^{-2 \alpha \beta}(1-\beta t)^{-\alpha-1}(2 \beta t-1) \\
y^{\prime \prime} & =\alpha \beta^{2} e^{-2 \alpha \beta}(1-\beta t)^{-\alpha-2}\left[1+\alpha(2 \beta t-1)^{2}\right] .
\end{aligned}
$$

Since $y^{\prime}=0$ at $t=1 /(2 \beta) \in(0,1 / \beta)$ and since $y^{\prime \prime}>0$ we see that y takes its minimum value at $t=1 /(2 \beta)$ and therefore

$$
P(X \geq 2 \alpha \beta) \leq\left.\frac{e^{-2 \alpha \beta t}}{(1-\beta t)^{\alpha}}\right|_{t=\frac{1}{2 \beta}}=\left(\frac{2}{e}\right)^{\alpha}
$$

Problem 3.3.15. Let X have a Poisson distribution with parameter m. If m is an experimental value of a random variable having a gamma distribution with $\alpha=2$ and $\beta=1$, compute $P(X=0,1,2)$.

Solution 3.3.15. We will be using techniques from the topic of joint and conditional distributions. We are given that m has a gamma distribution with $\alpha=2$ and $\beta=1$, therefore its marginal probability density function is $f_{m}(m)=m e^{-m}$ for $m>0$, zero elsewhere. For the random variable X, we are given the conditional probability mass function given m is $p(x \mid m)=$ $m^{x} e^{-m} / x$! for $x=0,1,2, \ldots$ and $m>0$, zero elsewhere. From the given information we are able to determine that the joint mass-density function is

$$
f(x, m)=p(x \mid m) f_{m}(m)=m^{x+1} e^{-2 m} / x!
$$

for $x=0,1,2, \ldots$ and $m>0$, zero elsewhere. We calculate the marginal probability mass function for X,

$$
\begin{aligned}
p_{X}(x) & =\int_{-\infty}^{\infty} f(x, m) d m \\
& =\int_{0}^{\infty} \frac{m^{x+1} e^{-2 m}}{x!} d m \quad(\text { letting } u=2 m, d u=2 d m) \\
& =\frac{1}{2^{x+2} x!} \int_{0}^{\infty} u^{(x+2)-1} e^{-u} d u \\
& =\frac{\Gamma(x+2)}{2^{x+2} x!} \\
& =\frac{x+1}{2^{x+2}}
\end{aligned}
$$

for $x=0,1,2, \ldots$, zero elsewhere. This allows us to find

$$
\begin{aligned}
& P(X=0)=p_{X}(0)=\frac{1}{4}, \\
& P(X=1)=p_{X}(1)=\frac{1}{4}, \\
& P(X=2)=p_{X}(2)=\frac{3}{16} .
\end{aligned}
$$

3.3.19. Determine the constant c in each of the following so that each $f(x)$ is a $\beta \mathrm{pdf}$:
(1) $f(x)=c x(1-x)^{3}, 0<x<1$, zero elsewhere.
(2) $f(x)=c x^{4}(1-x)^{5}, 0<x<1$, zero elsewhere.
(3) $f(x)=c x^{2}(1-x)^{8}, 0<x<1$, zero elsewhere.

Solution 3.3.19.

(1) $c=1 / B(2,4)=\Gamma(6) /(\Gamma(2) \Gamma(4))=5!/(1!3!)=20$.
(2) $c=1 / B(5,6)=\Gamma(11) /(\Gamma(5) \Gamma(6))=10!/(4!5!)=1260$.
(3) $c=1 / B(3,9)=\Gamma(12) /(\Gamma(3) \Gamma(9))=11!/(2!8!)=495$.

Problem 3.3.22. Show, for $k=1,2, \ldots, n$, that

$$
\int_{p}^{1} \frac{n!}{(k-1)!(n-k)!} z^{k-1}(1-z)^{n-k} d z=\sum_{x=0}^{k-1}\binom{n}{x} p^{x}(1-p)^{n-x}
$$

This demonstrates the relationship between the cdfs of the β and binomial distributions.

Solution 3.3.22. This problem is very similar to problem 3.3.5. In this case the key to the induction step is the following calculation:

$$
\begin{gathered}
\binom{n}{k} p^{k}(1-p)^{n-k}=-\left.\frac{n!}{k!(n-k)!} z^{k}(1-z)^{n-k}\right|_{p} ^{1} \\
=\int_{p}^{1} \frac{d}{d z}\left[-\frac{n!}{k!(n-k)!} z^{k}(1-z)^{n-k}\right] d z \\
=\int_{p}^{1}-\frac{k n!}{k!(n-k)!} z^{k-1}(1-z)^{n-k}+\frac{(n-k) n!}{k!(n-k)!} z^{k}(1-z)^{n-k-1} d z \\
=\int_{p}^{1}-\frac{n!}{(k-1)!(n-k)!} z^{k-1}(1-z)^{n-k}+\frac{n!}{k!(n-k-1)!} z^{k}(1-z)^{n-k-1} d z
\end{gathered}
$$

The rest of the proof is similar to the argument in problem 3.3.5.
Remark: an alternate proof is to observe that $\sum_{x=0}^{k-1}\binom{n}{x} p^{x}(1-p)^{n-x}$ is a telescoping series, when you take advantage of the above calculation.

Problem 3.3.23. Let X_{1} and X_{2} be independent random variables. Let X_{1} and $Y=X_{1}+X_{2}$ have chi-square distributions with r_{1} and r degrees of freedom, respectively. Here $r_{1}<r$. Show that X_{2} has a chi-square distribution with $r-r_{1}$ degrees of freedom.

Solution 3.3.23. From appendix D on page 667 , we see that the mgfs of X_{1} and Y are, respectively, $M_{X_{1}}(t)=(1-2 t)^{-r_{1} / 2}$ and $M_{Y}(t)=(1-2 t)^{-r / 2}$. Since $Y=X_{1}+X_{2}$ is the sum of independent random variables, $M_{Y}(t)=$ $M_{X_{1}}(t) M_{X_{2}}(t)$ (by Theorem 2.2.5). Solving, we find that

$$
M_{X_{2}}(t)=\frac{M_{Y}(t)}{M_{X_{1}}(t)}=\frac{(1-2 t)^{-r / 2}}{(1-2 t)^{-r_{1} / 2}}=(1-2 t)^{-\left(r-r_{1}\right) / 2}
$$

which is the mgf of a chi-square random variable with $r-r_{1}$ degrees of freedom. Therefore, by Theorem 1.9.1, X_{2} has a chi-square distribution with $r-r_{1}$ degrees of freedom.

Problem 3.3.24. Let X_{1}, X_{2} be two independent random variables having gamma distributions with parameters $\alpha_{1}=3, \beta_{1}=3$ and $\alpha_{2}=5, \beta_{2}=1$, respectively.
(1) Find the mgf of $Y=2 X_{1}+6 X_{2}$.
(2) What is the distribution of Y ?

Solution 3.3.24. (1) The mgfs of X_{1} and X_{2} are, respectively,

$$
M_{X_{1}}(t)=(1-3 t)^{-3} \text { and } M_{X_{2}}(t)=(1-t)^{-5} .
$$

Since X_{1} and X_{2} are independent, theorem 2.5.4 implies that

$$
\begin{aligned}
M_{Y}(t) & =E\left[e^{t\left(2 X_{1}+6 X_{2}\right)}\right] \\
& =E\left[e^{2 t X_{1}} e^{6 t X_{2}}\right] \\
& =E\left[e^{2 t X_{1}}\right] E\left[e^{6 t X_{2}}\right] \\
& =M_{X_{1}}(2 t) M_{X_{X}}(6 t) \\
& =(1-3(2 t))^{-3}(1-1(6 t))^{-5} \\
& =(1-6 t)^{-8} .
\end{aligned}
$$

(2) Since $(1-6 t)^{-8}$ is the mgf of a gamma distribution with parameters $\alpha=8$ and $\beta=6$, Theorem 1.9.1 shows that Y has a gamma distribution with parameters $\alpha=8$ and $\beta=6$.

