MATH 472 HOMEWORK ASSIGNMENT 1

Problem 1.9.2. Let p(x) = 1/2%, x = 1,2,3,..., zero elsewhere, be the
pmf of the random variable X. Find the mgf, the mean, and the variance
of X.

Solution 1.9.2. Using the geometric series a/(1 —r) = Y5, ar®! for
|r| < 1, we are able to compute the mgf of X,

m(t) = E[e*] =) ep(z) = /2" =) (e'/2)"
r=1 r=1 r=1
_ e'/2 — (9t — 1)1
- 1— (et/2) (2 1) 9

for t < In2. With m(t) = (27t —1)~L, we are able to compute the first and
second derivatives of m(t),

m/(t) =2e t(2e7t —1)72
m"(t) = 2e (27t +1)(2e7F — 1),

The first and second moments of X are = m/(0) = 2 and pus = m”(0) = 6,
and the variance is 02 = up — u? = 6 — 4 = 2. Therefore the mgf, the mean,
and the variance of X are

mt)=Q2e -1 p=2 o>=2
Problem 1.9.3. For each of the following distributions, compute
Plp—20 <X < p+20).

(1) f(x) =6x(1 —z),0 <z <1, zero elsewhere.
(2) p(z) =1/2%,2=1,2,3,..., zero elsewhere.

Solution 1.9.3. (1) The mean and second moment are
1 1
= / xf(z)de = / 622(1 — x)dx = 1/2
0 0

1 1
,uQ:/O a:Qf(:r;)dx:/O 623(1 — x) de = 3/10,

so the variance is 02 = g — p? = 3/10 — (1/2)? = 1/20 and the standard
deviation is o = 1/1/20 = v/5/10 < 0.224. Hence

1 5 1 5
P(/L—20’<X<M+20’):P(*—£<X<*+£)
2 5 2 5
T ol — ) d
—/ér5 6x(1 — z)dx
11
_ IV 0sa
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Remark: f(x) = 6z(1 — x) is the density for a Beta distribution with pa-
rameters o = 2, 8 = 2, so you can quickly find the mean and variance using
the equations on page 667.

(2) From problem 1.9.2, we know that y = 2 and o = /2. Since y—20 =
2-2v2<0and p+20=2+2v2~ 482

P(p—20 <X <p+20)=P(X <4)

Problem 1.9.5. Let a random variable X of the continuous type have a
pdf f(x) whose graph is symmetric with respect to z = c¢. If the mean value
of X exists, show that E[X] = c.

Solution 1.9.5. Given that f(c—x) = f(c+x), we will show that E[X —¢] =
E[X]—c=0.

E[X—c]:/::(x—c)f(m)dx
:/C (x—c)f(a:)dx+/coo(x—c)f(x)d:z.

—0o0

In the first integral, make the substitution x = ¢ — u,dxr = —du and in the
second integral make the substitution x = ¢ + u, dx = du. Then

E[X—c]:/c (ﬂc—c)f(:v)d:v—l—/coo(a:—c)f(x)dx.

—00

—/Ouf(c—u)du—i-/ooouf(c—i—u)du

o0

:_/oouf(c+u)du+/oouf(c+u)du=0,
0 0

as desired. We conclude that if the density function for a random variable
X is symmetric about the point ¢, then u = F[X] = c.

Problem 1.9.6. Let the random variable X have mean pu, standard devia-
tion o, and mgf M(t), —h < t < h. Show that

2
E[X ”}:0, E <X M)]zl, and
o

o
B {exp [t <X“ﬂ } — el <t> . ho<t<ho
o o
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Solution 1.9.6. Using the linear properties of expected value (see Theorem
1.8.2) and the definition of u = E[X], we calculate

E[X—u] _EX -y EX]-p _ p—p

o o o o
which verifies the first equation.

Using the linear properties of expected value again and the definition of
02 = B[(X — u)?], we calculate

(X—M)Q . [(X—M)Q] _B(xX—p? _o® 3

o2 o2
which verifies the second equation.

If —ho <t < ho then —h < t/o < h, which shows that /o is in the
domain of M. Using the definition of M(t) = FElexp(tX)] and the linear
properties of the expected value, we calculate
e_%tM <t> — e_%tE [e%x} = F [e_%teix} = F [egx_%t] = F [et@} ,

g

E

which verifies the third equation.

Problem 1.9.7. Show that the moment generating function of the random
variable X having the pdf f(z) =1/3, —1 < x < 2, zero elsewhere, is

2t t

1, t=0.

Solution 1.9.7. As with every mgf, M (0) = E[¢] = E[1] = 1. For t # 0,
2

[eS) 2 etw em
M(t) = E [e"*] :/ et’”f(x)dx:/13dx:3t

Problem 1.9.11. Let X denote a random variable such that K (t) = E[t¥]
exists for all real values of ¢ in a certain open interval that includes the
point t = 1. Show that K(™)(1) is equal to the mth factorial moment
EX(X-1)--- (X —=m+1).

Solution 1.9.11. Differentiating k(¢) = ¢t* m times we find
Em@) =a(z—1)-- (x —m+ 1)"™.

We may therefore expand t* in its Taylor series about ¢t = 1

£ = ikm)(l)(t;j)m: 3 w(z—1)-(z—m+1)
m=0 )

m=0

t-—1m
m!
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Using this Taylor series we see that

K(t):E[tX] =F iX(X_l)”‘(X—m%—l)W
m=0 :
:iE[X(X_l)"'(X—m—}—l)](t_nj)m
m=0
= >

0

3
I

Comparing the last two series shows that

KM1)=E[X(X—-1)--- (X —m+1)].

Problem 1.9.12. Let X be a random variable. If m is a positive integer,
the expectation E[(X — b)™], if it exists, is called the mth moment of the
distribution about the point b. Let the first, second, and third moments of
the distribution about the point 7 be 3, 11, and 15, respectively. Determine
the mean p of X, and then find the first, second, and third moments of the
distribution about the point pu.

Solution 1.9.12. We are given E[X — 7] = 3, E[(X — 7)?] = 11, and
E[(X — 7)3] = 15. Expanding the first equation gives

EX -7 =FEX]|-T=p—-7=3,
and therefore p = 10. Continuing the calculations,

E[(X — p)*] = B[(X —10)*) = E{[(X - 7) - 3]’}
=E[(X-72-6(X-7)+9=E[(X-7)?%—-6EX —7]+9
=11-1849=2.

Bl(X —p)’] = E[(X —=10)*) = E{[(X - 7) = 3]’}
= E[(X —=7)3 —=9E[(X — 7)?| + 27E[X — 7] — 27
=15 —99 + 81 — 27 = —30.

Thus the first, second, and third moments of X about the mean u = 10 are
respectively 0, 2, and —30.

Problem 1.9.25. Let X be a random variable with a pdf f(x) and mgf
M (t). Suppose f is symmetric about 0; i.e., f(—z) = f(x). Show that
M(—t) = M(t).
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Solution 1.9.25. We will use the substitution £ = —u,dr = —du in the
following calculation.

M(—t) = / NETE f(x)de = / et f(x)dax

- _7_00 e f(—u) du :700 e f(u) du
_ M), i

Problem 1.10.3. If X is a random variable such that F[X] = 3 and
E[X?) = 13, use Chebyshev’s inequality to determine a lower bound for
the probability P(—2 < X < 8).

Solution 1.10.3. Chebyshev’s inequality states that P(|X — u| < ko) >
1 — (1/k?). In this problem y = 3 and 0% = 13 — 9 = 4, giving 0 = 2. Thus
P(-2<X <8 =P(-5<X—-3<5)=P(]|X—-3|<5)

5
= P(1X 3| < 52)

2\ 4 21
>1-(2) =1—-— ==,
) 25 25
From the Chebyshev inequality we conclude that P(—2 < X < 8) > 21/25.

Problem 1.10.4. Let X be a random variable with mgf M (t), —h < t < h.
Prove that
P(X >a) <e ™M(t), 0<t<h,
and that
P(X <a) <e ™M(t), ~h <t<0.

Solution 1.10.4. We will use Markov’s inequality (Theorem 1.10.2), which
states that if u(X) > 0 and if ¢ > 0 is a constant, then

P(u(X) > ¢) < Elu(X)]/c.

We will also use the facts that increasing functions preserve order and de-
creasing functions reverse order.

Consider the function u(z) = € > 0, which is an increasing function
of x as long as t > 0. So, for ¢ > 0 we have that X > ¢ if and only if
!X = u(X) > u(a) = e**. Applying Markov’s inequality and the definition
of M(t) we have for 0 <t < h

P(X >a) = P(e > e') < E[e!N]/ef = et M (1).

tx

When t < 0, u(z) = e > 0 is a decreasing function of z, so X < a if and
only if e = u(X) > u(a) = €. Applying Markov’s inequality again we
have for —h <t <0

P(X < a) = P(e" > e!%) < E[e!X]/e!* = e71 M (1).
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Problem 1.10.5. The mgf of X exists for all real values of ¢ and is given
by

€t t

Aﬂﬂ:—%f—J#OJﬂ@:L
Use the result of the preceding exercise to show that P(X > 1) = 0 and

P(X < —1) = 0.

Solution 1.10.5. Taking a = 1 in problem 1.10.4, we see that for all t > 0,
P(X >1)<e'™M(t) = (1 — e 2)/(2t). Taking the limit as t — oo
—2t

1i
0<P(X>1)< lim—— =0
t—00 2t

which shows that P(X > 1) =0.
Taking a = —1 in problem 1.10.4, we see that for all t < 0, P(X < —1) <
e!M(t) = (e?' —1)/(2t). Taking the limit as t — —oo
2t
—1

< <-1)< li
BCERERIES

=0
which shows that P(X < —1) =0.

Problem 3.3.1. If (1 — 2t)7% ¢ < 1/2, is the mgf of the random variable
X, find P(X < 5.23).

Solution 3.3.1. The mgf of X is that of a y2-distribution with r = 12
degrees of freedom. Using Table II on page 658, we see that the probability
P(X < 5.23) = 0.050.

Problem 3.3.2. If X is x?(5), determine the constants ¢ and d so that
Plc < X < d) = 0.95 and P(X < ¢) = 0.025.

Solution 3.3.2. Using Table II on page 658 we find P(X < 0.831) ~ 0.025
and P(X < 12.833) ~ 0.975. So, with ¢ = 0.831 and d = 12.833 we have
Plc< X <d) =0.975 — 0.025 = 0.95 and P(X < ¢) = 0.025.

Problem 3.3.3. Find P(3.28 < X < 25.2) if X has a gamma distribution
with @« = 3 and 8 = 4.

Solution 3.3.3. The mgf of X is Mx(t) = (1 — 4¢)~3. From this we see
that M (t/2) = E[e!X/?] = (1 — 2t)~3, which is the mgf for a x? with 7 = 6
degrees of freedom. Using Table II on page 658 we calculate

P(3.28 < X <25.2) = P(1.64 < X/2 < 12.6) ~ 0.950 — 0.050 = 0.900.
Problem 3.3.5. Show that

9] Zk—le—z k—1 Mxe—p,
1 ——dz = —, k=1,2,3,....
( ) /l; P(k) < xzo 33' ) P )

This demonstrates the relationship between the cdfs of the gamma and Pois-
son distributions.
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Solution 3.3.5. An easy calculation shows that equation (1) is valid for
k =1, which establishes the base case for an induction proof.
The key to establishing the induction step is the following calculation:

Mkeﬁu . Ske—2 e
D(k+1) (k+1)
[e's) d k —z
- el
00 ]{Zk 1672 k e % &
+
[ I'(k+1)
00 k 1 e~ % k: e~ %
dz.
L Th+1)"

Now add p*e=#/T'(k + 1) to both sides of equation (1) to obtain
0 Jh—lg=z u e H ure “ u e H ,w’”e*“
d
[ e e = B e L

Using equation (2) to simplify the left hand side of the previous equation
yields

which shows that equation (1) is true for k4 1 if it is true for k. Therefore,
by the principle of mathematical induction, equation (1) is true for all k =
1,2,3,. ...

Problem 3.3.9. Let X have a gamma distribution with parameters o and
B. Show that P(X > 2af8) < (2/e)*.

Solution 3.3.9. From appendix D on page 667, we see that the mgf for
Xis M(t) = (1 —pt) " for t < 1/8. Problem 1.10.4 shows that for every
constant a and for every ¢ > 0 in the domain of M (t), P(X > a) < e"“M(t).
Applying this result to our gamma distributed random variable we have for
all0 <t <1/

67204615
(1-pt)*
Let us try to find the minimum value of y = e~2%%¢(1—Bt)~* over the interval

0 <t < 1/B. A short calculation shows that the first two derivatives of y
are

P(X >2ap) <

y = ozﬂe_%‘ﬁ(l — Bt)"*7 (268t — 1)
Y = af?e 281 — )2 [1+a(28t—1)%].
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Since y' =0 at t = 1/(28) € (0,1/8) and since y” > 0 we see that y takes
its minimum value at t = 1/(2/3) and therefore

-0

=35

e—2aﬁt
P(X > 2045) < m

t

Problem 3.3.15. Let X have a Poisson distribution with parameter m. If
m is an experimental value of a random variable having a gamma distribu-
tion with & = 2 and § = 1, compute P(X =0, 1,2).

Solution 3.3.15. We will be using techniques from the topic of joint and
conditional distributions. We are given that m has a gamma distribution
with o = 2 and 8 = 1, therefore its marginal probability density function is
fm(m) = me™™ for m > 0, zero elsewhere. For the random variable X, we
are given the conditional probability mass function given m is p(z | m) =
m®¥e” " /x! for x = 0,1,2,... and m > 0, zero elsewhere. From the given
information we are able to determine that the joint mass-density function
is
f(@,m) = p(a | m) frn(m) = m*H 2" /z]

for x = 0,1,2,... and m > 0, zero elsewhere. We calculate the marginal
probability mass function for X,

pxte) = [ fam)dm

0 mx+16—2m
= / ————dm (letting u = 2m, du = 2dm)
0 xZ.
— # > u(ﬁ‘#?)*lefu du
T 9z42,| 0
I'(z+2)
o 2z t2g
o+
T o9x2”
for x =0,1,2,..., zero elsewhere. This allows us to find
1
P(X =0) =px(0) = Yk
1
P(X=1)=px(1) = T
3
P(X=2)= 2) = —.
(X =2)=px(2) = 5

3.3.19. Determine the constant ¢ in each of the following so that each f(x)
is a B pdf:

(1) f(z) =cx(1—x)3, 0 <z <1, zero elsewhere.

(2) f(z) =cz*(1 —2)5 0 <z < 1, zero elsewhere.

(3) f(z) =cz?*(1 —2)%, 0 <z < 1, zero elsewhere.



Solution 3.3.19.

(1) ¢ =1/B(2,4) = I'(6)/(I'(2)T(4)) = 5!/(113!) = 20.
(2) ¢=1/B(5,6) = T'(11)/(I'(5)[(6)) = 10!/(4!5!) = 1260.
(3) ¢ =1/B(3,9) = ['(12)/(I'(3)1(9)) = 11!/(2!8!) = 495.

Problem 3.3.22. Show, for Kk =1,2,...,n, that

1 n' k—1 n—k = n x n—x
/p (k:—l)!(n—k)!z (1-2) dz:Z(x)p (1 —p)" =

z=0

This demonstrates the relationship between the cdfs of the 8 and binomial
distributions.

Solution 3.3.22. This problem is very similar to problem 3.3.5. In this
case the key to the induction step is the following calculation:

n e n! e
(k)pk(l o= kl(n— k;)!zk(l -
p

_ /pl % [_k!(;’ik)!z’“u - z)”_k] dz

! kn! E1 (n — k)n!
— ey n—k RSP ARAY 1— n—k—1 d
/p Hon—m. AT s ) g

1

= /1— n! zk_l(l—z)"_k—i——n! zk(l—z)”_k_1 dz
), (k=Dl(n—k)! El(n —k—1)!

The rest of the proof is similar to the argument in problem 3.3.5.
Remark: an alternate proof is to observe that S %Z1 Mp*(1—p)" " isa

x
telescoping series, when you take advantage of the above calculation.

Problem 3.3.23. Let X; and X5 be independent random variables. Let
X1 and Y = X7 + X5 have chi-square distributions with r; and r degrees
of freedom, respectively. Here r; < r. Show that Xs has a chi-square
distribution with r — ry degrees of freedom.

Solution 3.3.23. From appendix D on page 667, we see that the mgfs of X;
and Y are, respectively, Mx, (t) = (1 — 2t)~"/2 and My (t) = (1 — 2t)~"/2.
Since Y = X; 4+ X5 is the sum of independent random variables, My () =
Mx, (t)Mx,(t) (by Theorem 2.2.5). Solving, we find that

My(t)  (1—2t)7"/2
My, ()~ (1—26) /7
which is the mgf of a chi-square random variable with » — r; degrees of

freedom. Therefore, by Theorem 1.9.1, X has a chi-square distribution
with r — r; degrees of freedom.

My, (t) = = (1—2t)" /2]
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Problem 3.3.24. Let X, X5 be two independent random variables having
gamma distributions with parameters oy = 3, 1 =3 and as =5, B2 = 1,
respectively.

(1) Find the mgf of Y = 2X; + 6Xo.
(2) What is the distribution of Y'?

Solution 3.3.24. (1) The mgfs of X; and X5 are, respectively,
My, (t) = (1 —3t)73 and Mx,(t) = (1 —t)7°.
Since X7 and X5 are independent, theorem 2.5.4 implies that
My(t) = E [et(2X1+6X2)]
— B [€2tX166tX2]

— E [GQtXl] E [€6tX2]

= Mx, (2t)Mx,(6t)
= (1-3(2t))73(1 - 1(6t))°
= (1—6t)7%,

(2) Since (1 — 6t)~% is the mgf of a gamma distribution with parameters
a = 8 and § = 6, Theorem 1.9.1 shows that Y has a gamma distribution
with parameters a = 8 and 5 = 6.



